
HighIntegritySystems

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

v

Checkpoints and
Temporal Separation
Issue 1.1 - April 24, 2017

Copyright WITTENSTEIN aerospace & simulation ltd date as document, all rights reserved.

HighIntegritySystems

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 2

Contents...2
List Of Figures...3
List Of Notation...3

CHAPTER 1 Introduction...4
1.1 Introduction..4
1.2 Use Case - An Embedded System...5

CHAPTER 2 System Architectecture and its Effect on Temporal Separation............6
2.1 Temporal Separation with a Multi-Processor System..6
2.2 Temporal Separation with a Multi-Core System...6
2.3 Temporal Separation with a Single Core System...7

CHAPTER 3 Using Software Timers to Monitor Temporal Separation........................8
3.1 Temporal Separation Problems...8
3.1.1 Temporal Scheduling Problems with Priority Based Pre-emptive Scheduling.............................8
3.1.2 Avoiding Temporal Scheduling Problems...9
3.2 Monitoring Temporal Separation using Software Timers..10
3.2.1 Using a Software Timer to Monitor Task Execution...10
3.2.2 Using a Software Timer to Monitor Interrupt Responses or Whole Safety Functions...............10
3.2.3 Disadvantages of Using Software Timers for Task Monitoring...11
3.3 SAFERTOS® and SAFECheckpoints...12

Contact Information...13

Contents

HighIntegritySystems

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 3

List of Figures

Figure 1-1 A Typical Embedded System..5
Figure 2-1 A Multi Processor System..6
Figure 2-2 A Multi-Core System..7
Figure 2-3 A Single Core System...7
Figure 3-1 A Balanced Prioritised System...8
Figure 3-2 Effects of Asynchronous Events on A Balanced System...8
Figure 3-3 A Severely Unbalanced System...9
Figure 3-4 Using a Software Timer to Monitor Task Execution...10
Figure 3-5 Using a Software Timer to Monitor Task Execution in an Unbalanced System..................11

List of Notation

BSP Board Support Package
COTS Commercial off-the-shelf
DAP Design Assurance Pack
DHF Design History File
MCU Microcontroller Unit
MPU Memory Protection Unit
MMU Memory Management Unit
RTOS Real Time Operating System
SIL Safety Integrity Level
SOUP Software of Unknown Provenance

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 4

1.1 Introduction
In some industries, safety critical software has been in use for many years. However, increased regulation and the existence
of domain specific safety development standards had led to a rapid growth in systems that use software classified as safety
critical. The objective of all domain specific safety standards is to ensure that embedded system designs are robust, prevent
harm or death occurring to users of the systems, or damage happening to surrounding equipment or the environment. Each
application domain has slightly different use cases, which the safety standards take into account. The most used safety
standards in embedded engineering are as follows:

• Industrial IEC 61508
• Medical IEC 62304 and FDA 510(k)
• Automotive ISO 26262
• Rail EN50128, EN50129
• Aerospace DO-178C

These safety standards typically define a range of safety levels. The safety levels classify the context the system is operating
in, and define the amount harm the system can potentially cause. The higher the safety level, the greater the potential harm,
and therefore the more demanding the development life cycle becomes.

In many cases safety critical systems also have to support feature rich graphical interfaces, responsive networking
communications, diagnostics, data storage and much more. For example, your typical medical device not only has to
protect the patient and medical practitioner from harm, it must provide a good user experience, be easy to use, and
communicate treatment data back to a healthcare center.

System designers face the challenge of providing safety and functionality as part of the same system. Due to the rigors of
developing safety critical software the development costs are high and it would not be feasible to develop all the software
used within the system to the highest safety level required. In addition, many software systems use third party components
such as networking stacks and file systems - the development history of these components may be unknown, and hence
would achieve a very low safety rating classification. In moderately complex systems, there may therefore be several different
levels of safety software.

The software within the system needs partitioning to ensure that software from lower safety levels cannot interfere with
software relating to the higher safety levels. Partitioning allows the safety related software to be small and concise, whilst
allowing the use of third party software modules, thereby shortening developments times and lowering costs.

This paper discusses techniques to achieve temporal separation or time based partitioning within mixed safety level
embedded systems. Temporal separation is concerned with ensuring that it is not possible for the other system software to
compromise the processing demands of the safety critical software. While direct access to available processing resources
is a primary part of ensuring temporal separation, system events and triggers may also require analysis in this regard.

CHAPTER 1 Introduction

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 5

1.2 Use Case – An Embedded System
For the purposes of this paper, we shall consider a moderately complex but typical embedded system as shown in Figure
1-1. From a software perspective, it includes components that developed to different standards and Safety Integrity Levels
(SIL), the system includes:

• Safety Critical Software (outlined in orange) – “Sensor Processing”, “Control Logic” and the “Output Driver” contain the
code that will implement the Safety Function of the application. Operation of this code must be entirely independent of
the other.

• Commercial grade third party software (outlined in green) – This is Software of Unknown Provenance (SOUP). We do
not have access to the formal requirement or test documentation and it is either not possible or impractical to test this
software to the required SIL of the product.

• Other software not developed to a required SIL.

It is important to note that the commercial components and ‘other’ software are not necessarily poor or functionally
inadequate; however, when developing a safety system it is generally necessary to be able to prove that the software fully
satisfies the requirements and that all software included in the project is necessary, complete and fully tested. This is typically
not possible for third party components.

Figure 1-1 A Typical Embedded System

For this system to be implementable in a manner acceptable for a safety system, we need to be able to prove:

• Spatial separation between the safety code/data and the non-safety code/data. Spatial separation implies a clear
separation between the safety and non-safety code and that the non-safety code cannot access any memory locations
or peripheral components required by the safety code.

• Temporal separation between the safety code and the non-safety code. Temporal separation implies that the safety
code has sufficient runtime to achieve its purpose and that this cannot be compromised by misbehaving or otherwise
busy code.

• Data passed through non-safe stacks is either not safety related or protected. Where data received travels through
unsafe channels (including software stacks and hardware communication busses), its integrity and validity must be
assured before use in safety related processing.

This paper is concerned with the issues relating to temporal separation only; spatial separation and data integrity are the
subject of other white papers, available from www.highintegritysystems.com/white-papers/

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 6

2.1 Temporal Separation with a Multi-Processor System
There a number of different ways of designing the system described in the previous section. The classic approach is to split
the software load across multiple processors, therefore we can have the arrangement shown in Figure 2-1 with the safety
software hosted on one microprocessor and the support software hosted on a second ‘non-safety’ processor.

CHAPTER 2 System Architecture and its Effect on Temporal Separation

2.2 Temporal Separation with a Multi-Core System
Multi-core processors are becoming increasing prevalent from many silicon vendors. These offer a solution where more
processing power is available without increasing the complexity of the hardware design, as only one physical device has to
be included. Figure 2-2 illustrates an architecture where the ‘Safety Core’ hosts the safety code and the ‘Support’ or ‘Non-
Safety’ Core hosts the supporting software.

From the perspective of demonstrating and proving temporal separation, this is identical to the multi-processor system, as
there is clearly a physical separation between the CPU’s.

Interrupts

High Priority Task

Low Priority Task

Medium Priority Task

Idle Task

Time

High Priority Task

Low Priority Task

Idle Task

Time

Tmin=45

Tmax=55

Tmin=45

Tmax=55

At each checkpoint:
 1. Checks that the elapsed time is
greater than Tmin. If it’s not, trigger
error routine (Task Underrun)
 2. Restart software timer with
interval = Tmax

Tmax Timer Handler:
Trigger error routine. (Task Overrun)

High Priority Task

Low Priority Task

Idle Task

Time

Time

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Time

Low Priority Task 1

Checkpoint Timer

Tmax=25

The Checkpoint routine stops the
timer before it expires as the time
profile has been satisfied.

The Timer expires
and the error is
reported.

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Low Priority Task 1

T1=25

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Processor Support Processor

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Core Support Core

RAM

Flash
Memory

Shared Peripherals

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Single Core

RAM

Flash
Memory

Shared Peripherals

Figure 2-1 A Multi-Processor System

From the perspective of demonstrating and proving temporal separation, this is ideal, as there is clearly a physical separation
between the CPU’s and their associated memories. However, the increase in cost of hardware and the increased complexity
of the hardware design may not be acceptable or desirable for all products.

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 7

Figure 2-2 A Multi-Core System

Interrupts

High Priority Task

Low Priority Task

Medium Priority Task

Idle Task

Time

High Priority Task

Low Priority Task

Idle Task

Time

Tmin=45

Tmax=55

Tmin=45

Tmax=55

At each checkpoint:
 1. Checks that the elapsed time is
greater than Tmin. If it’s not, trigger
error routine (Task Underrun)
 2. Restart software timer with
interval = Tmax

Tmax Timer Handler:
Trigger error routine. (Task Overrun)

High Priority Task

Low Priority Task

Idle Task

Time

Time

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Time

Low Priority Task 1

Checkpoint Timer

Tmax=25

The Checkpoint routine stops the
timer before it expires as the time
profile has been satisfied.

The Timer expires
and the error is
reported.

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Low Priority Task 1

T1=25

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Processor Support Processor

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Core Support Core

RAM

Flash
Memory

Shared Peripherals

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Single Core

RAM

Flash
Memory

Shared Peripherals

2.3 Temporal Separation with a Single Core System
Where all the software is running on a single core, as shown in Figure 2-3, then clearly the architecture does not provide
any temporal separation between software modules. This means that any attempts to achieve temporal separation require
a software solution.

A ‘time separation’ kernel can achieve temporal separation provided the kernel itself meets the requirements of a safety
critical application and the system can accommodate the relatively inefficient processing model.

Figure 2-3 A Single Core System

Another option is to use a software component to detect infringements of the systems temporal requirements. Note that this
does not enforce temporal separation but will allow for detection and implementation of recovery actions.

Interrupts

High Priority Task

Low Priority Task

Medium Priority Task

Idle Task

Time

High Priority Task

Low Priority Task

Idle Task

Time

Tmin=45

Tmax=55

Tmin=45

Tmax=55

At each checkpoint:
 1. Checks that the elapsed time is
greater than Tmin. If it’s not, trigger
error routine (Task Underrun)
 2. Restart software timer with
interval = Tmax

Tmax Timer Handler:
Trigger error routine. (Task Overrun)

High Priority Task

Low Priority Task

Idle Task

Time

Time

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Time

Low Priority Task 1

Checkpoint Timer

Tmax=25

The Checkpoint routine stops the
timer before it expires as the time
profile has been satisfied.

The Timer expires
and the error is
reported.

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Low Priority Task 1

T1=25

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Processor Support Processor

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Core Support Core

RAM

Flash
Memory

Shared Peripherals

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Single Core

RAM

Flash
Memory

Shared Peripherals

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 8

3.1 Temporal Separation Problems

3.1.1 Temporal Scheduling Problems with Priority Based Pre-emptive Scheduling

In an embedded real time system, true temporal separation is hard to achieve as we are by definition responding to events
and timely response to these events is crucial. Figure 3-1 shows a system that has two periodic tasks and an idle task.
System operation is balanced and each task has sufficient run time even in worst-case execution conditions.

Figure 3-1 A Balanced Prioritised System

Figure 3-2 shows a system where the previously balanced system now has an interrupt that triggers a medium priority task.
It is easy to see that there is serious jitter in both the start and duration of the low priority periodic task.

Figure 3-2 Effects of Asynchronous Events on a Balanced System

CHAPTER 3 Using Software Timers to Monitor Temporal Separation

Interrupts

High Priority Task

Low Priority Task

Medium Priority Task

Idle Task

Time

High Priority Task

Low Priority Task

Idle Task

Time

Tmin=45

Tmax=55

Tmin=45

Tmax=55

At each checkpoint:
 1. Checks that the elapsed time is
greater than Tmin. If it’s not, trigger
error routine (Task Underrun)
 2. Restart software timer with
interval = Tmax

Tmax Timer Handler:
Trigger error routine. (Task Overrun)

High Priority Task

Low Priority Task

Idle Task

Time

Time

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Time

Low Priority Task 1

Checkpoint Timer

Tmax=25

The Checkpoint routine stops the
timer before it expires as the time
profile has been satisfied.

The Timer expires
and the error is
reported.

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Low Priority Task 1

T1=25

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Processor Support Processor

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Core Support Core

RAM

Flash
Memory

Shared Peripherals

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Single Core

RAM

Flash
Memory

Shared Peripherals

Interrupts

High Priority Task

Low Priority Task

Medium Priority Task

Idle Task

Time

High Priority Task

Low Priority Task

Idle Task

Time

Tmin=45

Tmax=55

Tmin=45

Tmax=55

At each checkpoint:
 1. Checks that the elapsed time is
greater than Tmin. If it’s not, trigger
error routine (Task Underrun)
 2. Restart software timer with
interval = Tmax

Tmax Timer Handler:
Trigger error routine. (Task Overrun)

High Priority Task

Low Priority Task

Idle Task

Time

Time

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Time

Low Priority Task 1

Checkpoint Timer

Tmax=25

The Checkpoint routine stops the
timer before it expires as the time
profile has been satisfied.

The Timer expires
and the error is
reported.

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Low Priority Task 1

T1=25

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Processor Support Processor

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Core Support Core

RAM

Flash
Memory

Shared Peripherals

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Single Core

RAM

Flash
Memory

Shared Peripherals

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 9

Figure 3-3 A Severely Unbalanced System

In this example, there is severe instability in the time taken to complete the low priority periodic processing. In one instance,
the low priority task 2 periodic processing has not completed when the next pass is due to commence. In addition, there
are severe delays in responding to the event that triggers the low priority event based task 1. Depending on the system in
question, this may be acceptable and perhaps altering task priorities will yield some improvements; however, it may also be
the case that a safety critical task has a defined time profile in order to maintain the correct operation of the system.

3.1.2 Avoiding Temporal Scheduling Problems

There are many established ways of handling the effect of scheduling overrun and thereby avoiding the extreme scenario
presented in Figure 3-3. These include:

• Minimising the processing that occurs within interrupt handlers.
• Analysing the worst-case interrupt processing within periodic frames and if necessary taking steps to limit the maximum

interrupt processing.
• Analysing the worst case processing within tasks and using this to determine average and peak CPU load.
• Wherever possible, making effective use of priority based scheduling so that essential tasks are performed in as

deterministic manner as possible.

Even when all potential scheduling problems have been addressed and the system is working correctly, we still have not
managed to prove temporal separation. For some systems, this may not be a problem; however, when dealing with a mixed
SIL system then it is necessary to be able to prove that software operating at a lower SIL cannot interfere with the operation
of software designed to a higher SIL.

Interrupts

High Priority Task

Low Priority Task

Medium Priority Task

Idle Task

Time

High Priority Task

Low Priority Task

Idle Task

Time

Tmin=45

Tmax=55

Tmin=45

Tmax=55

At each checkpoint:
 1. Checks that the elapsed time is
greater than Tmin. If it’s not, trigger
error routine (Task Underrun)
 2. Restart software timer with
interval = Tmax

Tmax Timer Handler:
Trigger error routine. (Task Overrun)

High Priority Task

Low Priority Task

Idle Task

Time

Time

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Time

Low Priority Task 1

Checkpoint Timer

Tmax=25

The Checkpoint routine stops the
timer before it expires as the time
profile has been satisfied.

The Timer expires
and the error is
reported.

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Low Priority Task 1

T1=25

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Processor Support Processor

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Core Support Core

RAM

Flash
Memory

Shared Peripherals

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Single Core

RAM

Flash
Memory

Shared Peripherals

Finally, Figure 3-3 adds another interrupt and a low priority event driven task.

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 10

3.2 Monitoring Temporal Separation Using Software Timers
Execution frequency (and jitter) of task execution can be monitored using software timers. Most commercial RTOSs offer
this feature and it is relatively simple to detect scheduling issues and help to prove temporal separation. Note that the
technique described here does not enforce temporal separation; it merely offers a means to detect when breaching of
temporal requirements occurs.

3.2.1 Using a Software Timer to Monitor Task Execution

Figure 3-4 shows a simple system with two periodic tasks running. At a given point in a tasks’ operation, the checkpoint
occurs where the temporal performance is measured. The elapsed time is calculated and used to determine whether a
scheduler underrun has occurred. The software timer used to detect scheduling overrun is reset (restarted). If at any time,
the software timer expires then the task is in breach of its scheduling policy and the error reported. Depending on the nature
of the time profiling, it may be more appropriate to implement the time checking at the beginning or end of the tasks run.

Figure 3-4 Using a Software timer to Monitor Task Execution

3.2.2 Using Software Timers to Monitor Interrupt Responses or Whole Safety Functions

These techniques can also be used to measure whole safety functions, where the final output may be the result of a number
of events occurring and a number of tasks interacting to produce the final output.

Deferred interrupt processing is a term used to describe a scheme where events are recognised using interrupts and then
passed into application tasks to perform the required processing. This has the advantage on minimising the time that the
system is unresponsive to other events but can lead to indeterminate delays fully processing and responding to the events.
Figure 3-3 illustrates this problem where the response to the low priority event is severely unstable. Figure 3-5 shows a
scheme where a checkpoint timer is started within an ISR when the event is first recognised, in the first case the processing
completes before the timer expires and all is well; however in the second case the timer expires and an error is reported, as
the response to the event is too slow.

Interrupts

High Priority Task

Low Priority Task

Medium Priority Task

Idle Task

Time

High Priority Task

Low Priority Task

Idle Task

Time

Tmin=45

Tmax=55

Tmin=45

Tmax=55

At each checkpoint:
 1. Checks that the elapsed time is
greater than Tmin. If it’s not, trigger
error routine (Task Underrun)
 2. Restart software timer with
interval = Tmax

Tmax Timer Handler:
Trigger error routine. (Task Overrun)

High Priority Task

Low Priority Task

Idle Task

Time

Time

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Time

Low Priority Task 1

Checkpoint Timer

Tmax=25

The Checkpoint routine stops the
timer before it expires as the time
profile has been satisfied.

The Timer expires
and the error is
reported.

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Low Priority Task 1

T1=25

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Processor Support Processor

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Core Support Core

RAM

Flash
Memory

Shared Peripherals

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Single Core

RAM

Flash
Memory

Shared Peripherals

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 11

3.2.3 Disadvantages of Using Software Timers for Task Monitoring

Using timers to implement monitoring checkpoints is a very simple concept and potentially very useful; however, there are
a number of drawbacks.

• The monitoring functionality, which potentially is an important part of the safety case, is part of the general software
timer mechanism. This means that any corruption or unanticipated behaviour with any software timer can affect the
integrity of the entire monitoring mechanism.

• The priority of the timer mechanism is the priority of the monitoring mechanism. Therefore, potentially a fault condition
can occur but go unreported as the CPU is performing higher priority processing.

• Using unique timer callbacks to identify the overrunning tasks requires much specialised code; however, a common
timer callback handler may not provide the ability to differentiate the offending task.

The first two issues raised can be resolved by using an external windowed watchdog, which is refreshed providing no timing
errors have been detected.

Interrupts

High Priority Task

Low Priority Task

Medium Priority Task

Idle Task

Time

High Priority Task

Low Priority Task

Idle Task

Time

Tmin=45

Tmax=55

Tmin=45

Tmax=55

At each checkpoint:
 1. Checks that the elapsed time is
greater than Tmin. If it’s not, trigger
error routine (Task Underrun)
 2. Restart software timer with
interval = Tmax

Tmax Timer Handler:
Trigger error routine. (Task Overrun)

High Priority Task

Low Priority Task

Idle Task

Time

Time

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Time

Low Priority Task 1

Checkpoint Timer

Tmax=25

The Checkpoint routine stops the
timer before it expires as the time
profile has been satisfied.

The Timer expires
and the error is
reported.

Interrupts

High Priority Task

Low Priority Task 2

Medium Priority Task

Idle Task

Low Priority Task 1

T1=25

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Processor Support Processor

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Safety Core Support Core

RAM

Flash
Memory

Shared Peripherals

Control Logic

Sensor
Processing

Output
Driver

Actuators s s s

Control Logic

Network
Stack

FAT File
System

Display
Driver

Flash
Driver

USB
Device
Stack

Ethernet Flash
Memory SD Card USB Display

Single Core

RAM

Flash
Memory

Shared Peripherals

Figure 3-5 Using a Software timer to Monitor Task Execution in an Unbalanced System

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 12

3.3 SAFERTOS® and SAFECheckpoints
Using a ‘safety certified’ RTOS such as SAFERTOS® provides peace of mind and documentary evidence that the RTOS has
been developed in accordance with the procedures necessary for inclusion within a safety certified product. Furthermore,
SAFERTOS also provides native support for a Memory Protection Unit (MPU), which allows the claiming of some degree
of spatial separation. To supplement this SAFERTOS also provides a dedicated checkpoints module, SAFECheckpoints,
which broadly operates in the manner described in this paper.

The SAFERTOS SAFECheckpoints mechanism operates within a dedicated kernel task (timer instance) that runs at the
highest priority available within the system. This ensures that any misbehaviour in the regular timer callback handlers cannot
affect the operation of the checkpoint monitoring and that other task processing cannot pre-empt or prevent the checkpoint
task from running.

A dedicated checkpoint mechanism also offers extra features within the API and therefore the safety certified kernel code:

• Limited checkpoint API minimizes problems within the safety monitoring system due to operator misuse;
• The ability to select single shot or periodic checkpoints;
• Periodic checkpoints can run their timing from absolute or relative checkpoints (scheduling drift may or may not be

allowable).
• Notification of checkpoint failures are by callback function; the system error handler or individual checkpoint callback

routines can be specified.
• The checkpoints mechanism includes methods to identify individual callbacks even when the same handler manages

multiple checkpoints.

Whatever the system architecture, SAFECheckpoints module offers the host application developer the necessary tools to
provide real time monitoring of the tasks within a safety system.

Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW: +44 1275 395 600

Checkpoints and Temporal Separation
Copyright date as document date.

Page 13

User feedback is essential to the continued maintenance and development of SAFERTOS. Please provide all software and
documentation comments and suggestions to the most convenient contact point listed below.

Contact WITTENSTEIN high integrity systems
Address: WITTENSTEIN high integrity systems
 Brown’s Court, Long Ashton Business Park
 Yanley Lane, Long Ashton
 Bristol, BS41 9LB
 England

Phone: +44 (0)1275 395 600
Fax: +44 (0)1275 393 630
Email: support@HighIntegritySystems.com

Website www.HighIntegritySystems.com

All Trademarks acknowledged.

Contact Information

