
Choosing An Appropriate
File System

AN101

Application Note

Contents

3 • Choosing an Appropriate File System

3 • Advanced Fail Safety

4 • FAT File System

4 • THIN File System

4 • SafeFAT File System

5 • SafeFLASH File System

5 • TINY Flash File System

5 • Smart-meter File System

6 • File System Feature and Performance Comparison

6 • Supported Media

 7 • Appendix A: Using Multiple File Systems, Common API (CAPI)

8 • Appendix B: Media Connectivity Schematic

2

Choosing an Appropriate File System

 Choosing an Appropriate
File System

HCC provides five file systems, each designed to achieve
the best balance of performance and resource utilisation
in their targeted embedded configuration. These file
systems share a common API, to ensure portability, and
can interface with any type of sector-based media. This
document helps designers choose the file system that
best suits their needs.

FAT Compatible File Systems
HCC supply three FAT based file systems

• FAT: full featured FAT file system that can be optimized
to suit the memory or performance requirements of an
embedded application.

• THIN: provides most functionality of HCC’s FAT file
system, optimized to use minimal ROM/RAM.

• SafeFAT: comprehensive FAT file system designed to
be truly fail-safe. SafeFAT protects against unexpected
reset or power loss.

Flash File Systems
HCC has two Flash file systems designed to meet the
demands of high performance flash media in embedded
systems.

• SafeFlash is a high performance truly fail-safe file
system that can be used with all NOR and NAND flash
or any media that can simulate a block-structured array.
SafeFLASH supports dynamic and static wear- leveling
and provides a highly efficient solution for products in
which data integrity is critical.

• TINY is a full-featured, fail-safe flash file system for use
in resource-constrained applications. TINY is designed
for use with NOR Flash with erasable sectors <4kB.
Typical devices supported include all common serial
flash and embedded versions such as TI MSP430
internal flash.

Flash Translation Layer
SafeFTL is an advanced fail-safe Flash Translation Layer
used to provide a logical, sector-based interface for any
application or file system using NAND or NOR Flash
devices. SafeFTL manages the underlying complexity of
Flash based media devices and can be used in conjunction
with any of HCC’s FAT file systems.

 Advanced Fail Safety
HCC has invested a great deal of research, test and
development effort to design truly fail-safe file systems
that will always recover from unexpected system events
such as power loss or reset. A standard FAT file system is
not fail-safe and therefore risks becoming corrupt – this
is not normally acceptable in an embedded environment.
The fundamental problem is that to make a new entry in
a FAT consistent, more than one area of the disk must be
modified in a single, uninterrupted action. This is logically
impossible to achieve. Although a check-disk program
can recover some situations, this normally requires user
intervention and decision-making. For product designers
who value or depend on the data stored in their embedded
devices, a fail-safe system is strongly recommended.

Journal based file systems generally guarantee only the
integrity of the metadata and are not always deterministic.
A transaction based file system provides integrity for both
file data and metadata, though the commit points are
normally system wide. HCC employs a hybrid approach
for its fail-safe file systems and all our implementations
are transaction based on a file-by-file basis. This has the
advantage that a single file operation can be executed
without reference to the state of other files or operations,
meaning each application using the file system can
operate safely and independently.

Any file system claiming fail-safety must define what
is required of the low-level media driver to guarantee
fail-safety. With all HCC fail-safe file systems, the
requirements of the low-level driver are clearly defined.
This enables designers to create systems that will survive
unexpected reset or power failure. It is important to note
that in most systems involving flash storage, careful
management of the power to the target media is critical.
HCC’s experienced team can offer insight into the design
of reliable file system solutions.

For all fail-safe file systems HCC have created simulation
environments that are designed to ensure the robustness
of the system through random reset and system
verification on restart. HCC develops test harnesses for
each system, in which an external controller randomly
interrupts power to the target system. In order to ensure
integrity, these tests are run continuously for weeks using
multiple hardware configurations.

3

* Note: ATMEL® and DataFlash® are the registered trademarks of Atmel.

 FAT File System
FAT is a full featured, high-performance file system
for use in embedded applications that need to attach
FAT12/16/32 compliant media to a product. Typically
this might be an SD card, Compact flash card or USB pen-
drive, but may also address any device that is arranged as
an array of logical sectors.

FAT File System Key features:
• Very High performance
• FAT12/16/32
• Long filenames
• Variable sector size support
• Unicode 16
• Multiple volumes
• Multiple simultaneous

open files
• Multiple users of same

open file
• Partition creation and

management
• Handles media errors
• High Performance Cache options
• Secure deletion option
• Standard drivers available for

SD /SDHC /SDXC /MMC /eMMC /SafeFTL
/USB-MST /HDD /RAM

 THIN File System
THIN is a full-featured FAT file system designed for
embedded MCUs with limited system resources that
wish to attach PC compatible media like SD cards or pen-
drives to their devices. The software has been carefully
engineered to enable the optimal balance of performance,
functionality and available resource.

THIN has the following limitations compared
to the full-featured FAT file system:
• Support for single volume only
• No multi-sector read/write
• No cache options
• No multi-partition support
• No files open simultaneously by multiple users
• Only supports 512byte sector size
• RAM usage 0.7–2kB
• Code usage 4–12kB

One of the main limitations if using THIN is that performance
will generally be lower than that achievable using FAT –
but it should be noted that if FAT uses the same limited
RAM allocation as a THIN system, the performance will be
similar. If there are no resource limitations, use of the FAT
file system is recommended, because it provides flexibility
for future development and performance improvement.

 SafeFAT File System
SafeFAT is an enhanced version of FAT. It has an identical
API but uses a hybrid transaction and journaling system
to ensure file system integrity in the event of unexpected
reset or power loss. HCC’s hybrid approach is particularly
recommended for use with integrated storage that cannot
rely on user intervention and check-disk to fix errors.

Key Features:
• High Performance
• Fail-safe operation
• FAT12/16/32
• Long filenames
• Variable sector size support
• Unicode 16
• Multiple volumes
• Multiple simultaneous open files
• Partition creation and management
• Handles media errors
• Cache options for better performance
• Secure deletion option
• Standard drivers available for SD /SDHC /SDXC /

MMC /eMMC /SafeFTL /USB-MST /HDD /RAM

SafeFAT has been extensively tested to ensure its integrity
using both complex simulation environments and physical
tests with injection of random failure events. This rigorous
approach makes SafeFAT the ideal file system for high
availability applications.

4

 SafeFLASH File System
Storing data on NOR or NAND flash efficiently and reliably
is a non-trivial task. SafeFLASH is a truly fail-safe flash file
system designed specifically for embedded MCUs. It can
be used with any NOR or NAND flash or any media that
can simulate a block structured array. SafeFLASH is highly
portable and has been used by hundreds of companies
worldwide to ensure the integrity of their applications.

• Fail-safe operation
• Long filenames
• Unicode 16
• Multiple volumes
• Multiple media types
• Multiple files open simultaneously
• Multiple users of same open file
• Optional CRC file integrity
• ECC handling
• Media error handling
• Static wear-leveling
• Dynamic wear-leveling
• Bad block management
• Garbage collection
• Supports all NOR flash types
• Supports all NAND flash types
• MCU/NAND controller support

When integrating NAND flash with an embedded system,
there are many design considerations e.g. unexpected
power loss, partial write or erase, wear-leveling and
error correction. NAND flash devices vary widely in their
requirement to use Error Correction Codes (ECC) to
guarantee the specified erase/write life. HCC can supply
software based ECC algorithms or can supply drivers that
support hardware based ECC implementations.

All flash devices (NOR & NAND) suffer from ‘wear’
due to repeated write/erase operation, SafeFLASH
includes comprehensive and efficient wear-management
algorithms.

 TINY Flash File System
TINY is a full-featured flash file system for use on MCUs
with limited resources. TINY is specifically designed for
flash devices that have small erasable sectors, typically
<4kB. This includes many serial flash devices or even the
internal flash on some MCUs. By limiting the application
of TINY to this subset of NOR flash devices, many
fragmentation and flash management issues have been

eliminated to make TINY a compact and reliable file
system.

Key features:
• Fail-safe
• Highly scalable
• Minimal footprint
• RAM usage <200 Bytes
• Code usage 4K-10K
• Support for many small sector flash types
• RAM drive
• Multiple simultaneous open files

Examples of supported media:
• AT45 like serial flash (e.g. Adesto, Spansion, Microchip)
• MSP430 internal flash
• Ramtron FRAM
• SST serial flash (Microchip)
• ST M25PExx, M45PExx (Micron)
• Winbond, Macronix and many more

TINY should only be chosen in preference to SafeFLASH if
the target system has limited memory available.

 Smart-meter File System

Instead of using a traditional file based system, HCC has
taken the radical approach of defining a system built
around the needs of smart-meters. Metering applications
usually have well defined record structures and HCC has
used its’ extensive flash experience to take advantage of
this characteristic. By taking a data focused, and not a
file focused approach, it is possible reduce the required
number of write/erase cycles by an order of magnitude.
Traditional file systems do not have built-in cyclic buffer
logic for storing records and this can add complexity,
significantly increasing the number of times flash must
be accessed. SMFS uses a structured database to
reduce complexity of the application which can improve
the performance in almost every way; speed, power
consumption, and flash life.

Benefits of SMFS:
• Fail-safe data storage for guaranteed system recovery.
• Persistent data storage for 15 years or more.
• Features developed to significantly lower manufacturing

BOM cost.
• Minimum number of flash operations to preserve both

the flash and the battery.
• Deterministic behavior in the event of unexpected reset.

5Choosing an Appropriate File System

 File System Feature and Performance Comparison
FAT THIN SafeFAT SafeFLASH TINY

Code Size1 ~24kB 4-12.5kB ~31KB 17-20kB 8.2kB

RAM >3KB 0.7->2KB >6KB varies2 <256bytes

Fail Safety N N Y Y Y

ANSI ‘C’ Y Y Y Y Y

Long Filename Support Y Y Y Y Y

Unicode Y N Y Y N

Multiple Open Files Y Y Y Y Y

Multiple Open File Users Y N Y Y N

Multiple Volumes Y N Y Y N

Multi-sector R/W Y N Y n/a n/a

Partition Handling Y N Y N N

Media Error Handling Y N Y Y N

CRC on files (optional) N N N Y N

Test Suite Y Y Y Y Y

Relative Performance very high med/low high high low

Cache Option Y N Y Y N

Zero Copy Y Y Y Y Y

Static Wear Leveling n/a n/a n/a Y N

Dynamic Wear Leveling n/a n/a n/a Y Y

Re-entrant Y N Y Y Y

CAPI Support Y N Y Y N

Secure Delete Option Y4 N Y4 Y3 N

FAT Compatible Y Y Y N N

1. Approximate numbers based on Cortex-M3 at high optimisation – long file names active, can be reduced further with LFN off.
2. RAM usage depends on the configuration and flash type. HCC provides a tool for calculating this number
3. NOR flash only
4. Needs special driver support

 Supported Media
FAT THIN SafeFAT SafeFLASH TINY

NAND Flash Y* Y* Y* Y N

NOR Flash Y* Y* Y* Y

Small Sector NOR Y* Y* Y* Y Y

MMC/eMMC/SD/SDHC/SDXC Y Y Y N N

Compact Flash Y Y Y N N

SSD Flash Y Y Y N N

USB Mass Storage Y Y Y N N

RAM Y Y Y Y Y

* Requires SafeFTL flash translation layer.

6

Y

 Appendix A:
Using Multiple File Systems, Common API (CAPI)

HCC provide five different file systems for embedded controllers to ensure that maximum
performance can be reached and that resource limitations can be managed effectively. There are
differences between each file system in the initialization, volume and partition control functions
because of their differing capabilities. However all file and directory manipulation functions are
entirely standard and 100% compatible across every file system.

The Common API (CAPI) is provided to allow any combination of HCC file system volumes to be
used under a single API wrapper. Drives appear as a standard array of drives with a common
API. The file system on each drive may be different but the user interface is entirely consistent.

File Operations

F_FILE *fopen(const char *filename, const char *mode); Open a file

int f_close(F_FILE *filehandle) Close a file

int f_flush(F_FILE *filehandle) Flush a file to disk

long f_write(const void *buf, long size, long size_st, F_FILE *filehandle) Write data to a file

long f_read(void *buf, long size, long size_st, F_FILE *filehandle) Read data from a file

long f_seek(F_FILE *filehandle, long offset, long whence) Seek to a new position in a file

long f_tell(F_FILE *filehandle) Tell the current file pointer

int f_eof(F_FILE *filehandle) Test if at end of file

int f_seteof(F_FILE *filehandle) Set end of file

int f_rewind(F_FILE *filehandle) Rewinds the file pointer to zero

int f_putc(char ch,F_FILE *filehandle) Put a character to the file

int f_getc(F_FILE *filehandle) Get a character from the file

F_FILE *f_truncate(const char *filename, unsigned long length) Truncate an open file

int f_ftruncate(F_FILE *filehandle, unsigned long length) Truncate a file

int f_delete(const char *filename) Delete a file

Directory Operations

int f_mkdir(const char *dirname) Make directory

Int f_chdir(const char *dirname) Change directory

int f_rmdir(const char *dirname) Remove directory

int f_getdrive(void) Get current drive

int f_chdrive(int drivenum) Change drive

int f_getcwd(char *buffer, int maxlen) Get current working directory

int f_getdcwd(int drivenum, char *buffer, int maxlen) Get cwd of specified drive

int f_rename(const char *filename, const char *newname) Rename a file

int f_move(const char *filename, const char *newname) Move a file

* Note: Unicode equivalent functions are provided for those file systems that support Unicode.

7Choosing an Appropriate File System

PC

M
ST

M
TP

Em
be

dd
ed

Ap
pl

ic
at

io
n/

s

Sa
fe

FA
T

US
B

M
ST

Sa
fe

FT
L

HD
D

/ S
AT

A
eM

M
C

Dr
iv

er
SD

/M
M

C/
CF

/
SD

HC
/S

DX
C

US
B

Ho
st

Co
nt

ro
lle

r

US
B

Dr
iv

e

FA
T

TH
IN

Sa
fe

Fl
as

h
TI

NY
Sm

ar
t-m

et
er

Fi
le

 sy
st

em

NA
ND

NO
R/

Se
ria

l N
OR

FT
P/

TF
TP

NO
R

NA
ND

Sm
ar

t-m
et

er
Ap

pl
ic

at
io

n/
s

US
B

De
vi

ce
 In

te
rfa

ce
TC

P/
IP

 In
te

rfa
ce

Fi
le

 S
ys

te
m

 C
om

m
on

 A
PI

Da
ta

ba
se

 A
PI

St
an

da
rd

 Fi
le

 S
ys

te
m

 D
riv

er
 In

te
rfa

ce

 A

pp
en

di
x B

:
Me

dia
 C

on
ne

cti
vit

y S
ch

em
at

ic

02
09

20
16

 t

 t
 t t

US sales office: Los Angeles, California

info@hcc-embedded.com

 Tel: +1 310 265-1304

 European sales office:
1133 Budapest, Váci út 76., Hungary Tel.: +36 1 450 1302
sales@hcc-embedded.com www.hcc-embedded.com

