
White paper

Pointer/Data Verification with
the PX5 RTOS

By Bill Lamie

Published January 25, 2023

Pointer/Data Verification with the PX5 RTOS

By Bill Lamie, PX5

Today, safety and security for embedded devices are paramount. While distinct requirements,
they have a high degree of overlap in the embedded PX5 RTOS context. For one, the PT5 RTOS
can help in avoiding memory corruption, the most common source of safety and security issues
in embedded devices. Moreover, leveraging the patent-pending Pointer/Data Verification
technology unique to the PX5 RTOS can greatly enhance the safety and security profile of your
embedded application.

What is Pointer/Data Verification (PDV)?
Pointer/Data Verification is a software-only technique to help detect and mitigate both
intentional and accidental memory corruption. The operating system creates and stores a
verification code for important information. Then, before the important information is used, a
new verification code is generated and compared with what was stored previously. If the codes
don’t match, memory corruption has occurred and the PX5 RTOS immediately alerts the
application by calling the central error handling function. Applications can define what happens
in the central error handling.

Verification code calculation
The application can define the formula for generating the verification code. However, by
default the verification code is a combination of a run-time identification (secret) passed to the
PX5 RTOS in the px5_pthread_start API along with the value of the important information and
the address to store the generated code. The default formula looks something like this:

Verification Code = ((Data Value) + (Address to Store Code) + (Secret)) ^ (Secret)

For verification codes that are run-time unique, we recommend using a True Random Number
Generator (TRNG) if available in hardware. With use of a TRNG, the verification code for each
important data element has a temporal property, i.e., it will be unique for each execution of
the application running on top of the PX5 RTOS. This makes it much harder for hackers to insert
malicious information such as function pointers for remote execution attacks. The verification
code address provides a special property to the verification code. It’s unlikely that any two
images will have the same memory layout, which again makes it more difficult for hackers to
successfully change important information without detection.

Verified Information
The PX5 RTOS provides optional PDV protection over a series of important internal information,
including:

• All function pointers used in the PX5 RTOS

• Global data of the PX5 RTOS

• Internal system structures with the PX5 RTOS (threads, queues, etc.)

• Return addresses on internal PX5 RTOS functions

• Metadata pointers used for memory management

• APIs for application-specific use of PDV

Enabling PDV
As mentioned, using PDV is optional and is not enabled by default. In addition, it can be
individually enabled for specific PX5 RTOS areas. To enable PDV, the PX5 RTOS source should
be built with the following defines (depending on the exact verification requested):

PX5_FUNCTION_POINTER_VERIFY_ENABLE When defined, all function pointers used internally

in the PX5 RTOS are evaluated against the

verification code that established when they were

set up. With this enabled, it’s much harder for

hackers to insert rogue function pointers in remote

execution attacks.

PX5_OBJECT_VERIFY_ENABLE When defined, all internal PX5 RTOS objects

(including the global PX5 RTOS data) are evaluated

against the verification code that was established

when they were created. This mechanism facilitates

early detection of intentional and accidental

memory corruption.

PX5_MEMORY_MANAGER_VERIFY_ENABLE When defined, all internal PX5 RTOS memory

manager linked-lists are evaluated against the

verification code that was established when the

memory pool was created and memory is allocated

or released. This mechanism helps early detection

of memory corruption, most usually associated with

the application writing past the allocated memory.

PX5_STACK_VERIFY_ENABLE When defined, the PX5 RTOS performs stack integrity
checking, including verification of the function call
return address when possible (when supported by
the compiler).

PDV Overhead
The amount of overhead associated with using PDV depends on the compiler, but is generally
minimal. Assuming the default verification code generation as described previously, the
assembly code to generate the verification code is only a couple of instructions on a typical
Arm Cortex-M architecture, as follows:

 ADDS R3, R2, R0
 EORS R3, R3, R4

This code assumes that R0 contains the important data value, R2 contains the address to store
the verification code, and R3 contains the run-time secret. It’s reasonable to assume that each
register might require a load instruction (LDR) and there will be one store instruction (STR) to
store the code. Given all of that, building and storing the default verification code takes roughly
six assembly instructions.

To verify the code, another six assembly instructions are required, along with another three
instructions to load the previously stored code, compare it, and branch to either the “okay”
path or to the central error handling.

Example PDV Stack Verification
The following is an IAR/Cortex-M example of how PDV can verify the stack (return address) in
the pthreads API call pthread_mutex_lock. Here is a snippet of the internal PX5 RTOS C
implementation of the pthread_mutex_lock API:

At this point in the function, the thread stack looks like the following:

Current stack pointer -> 0x00000f0d
 0x9d913aa9

 0x2002823c
 0x20000f7c
 0x00000000
 0x20029198
 0x2000000c
Beginning of function’s stack -> 0x00000f0d

The return address of this function call is in blue, and has the value of 0x00000f0d. The
verification code for this thread stack – based on the return address – is in red (0x9d913aa9).

Before the function returns, the verification code is recalculated and compared against the
stored value in red (0x9d913aa9). If they match, the processing returns normally to the caller
via the saved return address. If the verification code does not match, the central error
processing of the PX5 RTOS is called to alert the application of a stack corruption.

Summing Up
The PDV technology of the PX5 RTOS is a useful tool to help improve device safety and security.

The temporal and spatial properties make it quite effective. Its low overhead makes using it

practical. However, it is but a powerful part of the device’s overall defense in depth strategy.

