
HighIntegritySystems

email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

Written in Partnership with NXP
Copyright date as document date.

Issue 1.0 - June 21, 2023

Real-Time Drivers and 
SAFERTOS® for Safety 
Critical Applications 
How to migrate from SDK/MCAL to Real-Time Drivers and from 
FreeRTOS to SAFERTOS® for Safety Critical Applications.



email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas:	 +1 408 625 4712
ROTW:	 +44 1275 395 600

2

CONTENTS

Contents ......................................................................................................................................................................2
List Of Figures............................................................................................................................................................4

List Of Notation..........................................................................................................................................................4

CHAPTER 1	 Introduction...........................................................................................................................5

CHAPTER 2	 Real-Time Drivers (RTD)................................................................................................6
2.1	 Introduction to Real-Time Drivers (RTD).................................................................................................................6

2.2	 Supported Devices with RTD.................................................................................................................................7

	 2.2.1	 S32K1/K3 MCUs......................................................................................................................................7

	 2.2.2	 S32G2/G3 processors.............................................................................................................................7

2.3	 Downloading RTD.................................................................................................................................................7

2.4	 Migrating from SDK/MCAL to RTD........................................................................................................................7

	 2.4.1	 MCAL Migration Guide to RTD.................................................................................................................8

             2.4.2	 SDK Migration Guide to RTD....................................................................................................................9

CHAPTER 3	 Migrating from FreeRTOS™ to SAFERTOS®...................................................14

3.1	 Comparing FreeRTOS™ and SAFERTOS®...........................................................................................................14

             3.1.1	 A popular migration route.........................................................................................................................14

	 3.1.2	 A Shared History......................................................................................................................................14

             3.1.3	 Key Differences......................................................................................................................................15

3.2	 Migrating from FreeRTOS™ to SAFERTOS®..........................................................................................................16

             3.2.1	 Convert the Application to use SAFERTOS®..............................................................................................17

	 3.2.2	 Making Application Tasks Unprivileged....................................................................................................20

CHAPTER 4         Using RTD and SAFERTOS® in a Safety Critical Application.................21

CHAPTER 5	 Conclusion.........................................................................................................................22



email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

3

RESOURCES..........................................................................................................................................................23

Contact Information.............................................................................................................................................24



email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas:	 +1 408 625 4712
ROTW:	 +44 1275 395 600

4

List of Figures

Figure 2-1  Real-Time Drivers..............................................................................................................................................6

Figure 2-2  MCAL to RTD...................................................................................................................................................8

Table 2-1   SDK and RTD name differences......................................................................................................................11

List of Notation

API	

BSP

CAN

CDDs    

CPU

CSEc    

DAP      

DEM      

DET      

DHF      

ECC

ECU

HDQFP 

IP

HLI 

HSE 

IDE

IPW       

IVT

LIN 

Application Programming Interface 

Board Support Package

Controller Area Network

Complex Device Drivers

Central Processing Unit

Cryptographic Hardware Accelerator 

Design Assurance Pack

Diagnostic Event Manager 

Default Error Tracer 

Design History File

Error Correcting Code

Electronic Control Unit

High Density QFP 

Internet Protocol

High-Level Interface 

Hardware Security Engine 

Integrated Development Environment

IP Wrapper 

Interrupt Vector Table

Local Interconnect Network



email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

5

LLCE

LLI 

MCAL   

MCU

MMU

MPU

OS

OTA 

PAL 

PFE 

RM 

RTD      

RTOS

SAF      

SBCs 

SCST    

SDK    

SEooC

SIL

SPD     

SPI 

TCB

UART

Low Latency Communication Engine

Low-Level Interface 

Microcontroller Abstraction Layer

Microcontroller Unit

Memory Management Unit

Memory Protection Unit

Operating System

Over-The-Air 

Peripheral Abstraction Layer 

Packet Forwarding Engine 

Resource Manager 

Real Time Drivers 

Real Time Operating System

Safety Software Framework

System Basis Chips 

Structural Core Self-test

Software Development Kit

Safety Element out of Context

Safety Integrity Level

Safety Peripheral Drivers  

Serial Peripheral Interface

Task Control Block

Universal Asynchronous Receiver-Transmitter



email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas:	 +1 408 625 4712
ROTW:	 +44 1275 395 600

CHAPTER 1 Introduction

6

Functional safety is defined as the absence of unreasonable risk due to hazards caused by malfunctioning behaviour of 
electrical or electronic systems. Its focus within the automotive industry originated mainly in powertrain applications such 
as braking, chassis and steering control. Today, increased ECU content in vehicles and advanced safety features have 
contributed to its growth across numerous sub-systems including body control, battery management, and zonal control 
to name a few. NXP Semiconductor’s S32K1 and S32K3 families of automotive microcontrollers (MCUs) comprise single 
and multi-core devices that are suitable for applications that require ASIL B to ASIL D levels of functional safety. Safety 
hardware features include but are not limited to: ECC on Flash and RAM memories, clock and voltage monitors, and a 
Fault Collection and Control Unit (S32K3 only). Supporting these is a collection of NXP software – Real-Time Drivers (RTD) 
for AUTOSARTM and non-AUTOSAR, Structural Core Self-test (SCST) library, Safety Peripheral Drivers (SPD) and a Safety 
Software Framework (SAF). 

NXP’s S32K1, S32K3 and S32G processor families are supported by SAFERTOS® from WITTENSTEIN high integrity systems 
(WHIS). Used widely in automotive and other safety-critical applications, developers using SAFERTOS® will often prototype 
with open source FreeRTOS on the target hardware before upgrading to SAFERTOS® at the start of formal development.

This paper will examine the development of a safety application in the context of migrating from NXP’s Microcontroller 
Abstraction Layer (MCAL) or Software Development Kit (SDK) drivers to RTD, and from FreeRTOS to SAFERTOS®.
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CHAPTER 2 Real-Time Drivers (RTD)

2.1  Introduction to Real-Time Drivers
 
Real-Time Drivers (RTD) combine AUTOSAR MCAL drivers with a set of Complex Device Drivers (CDDs) and are designed 
for automotive processors featuring Arm® Cortex®-M cores. RTD combine elements of NXP’s SDK and MCAL drivers into 
a single software product that provides full IP and feature coverage for both AUTOSAR and non-AUTOSAR applications. 
Developed as a Safety Element out of Context (SEooC) using an ISO 2626 compliant process, RTD enhance and extend 
the previous generation of drivers and are suitable for use in applications up to ASIL D level. NXP provides RTD for System 
Basis Chips (SBCs), Ethernet and CAN PHY devices delivered as separate packages.

RTD are available as a standalone distribution or integrated within NXP’s S32 Design Studio (S32DS) IDE. RTD can be 
configured using the S32 Configuration Tool (S32CT), Elektrobit’s EB tresos Studio™ or  any other AUTOSAR compliant 
configurator (e.g. Vector’s DaVinci Configurator Pro™). The RTD installation package includes source code, comprehensive 
documentation and multiple examples/demos.

There are two APIs within RTD: a High-Level Interface (HLI) for AUTOSAR and non-AUTOSAR applications and a Low-
Level Interface (LLI) for non-AUTOSAR applications. Both have functionality for MCU, memory, communication, I/O and 
complex device drivers containing aspects for analogue, safety, security, header files and others. Safety Peripheral Drivers 
are delivered as part of NXP’s broader Safety Software Framework (SAF) or Safety Peripheral Drivers (SPD) packages.

Figure 2-1 Real-Time Drivers
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2.2 Supported Devices with RTD

RTD are available for a wide range of NXP automotive processors.  No license cost is required for use in AUTOSAR or non-
AUTOSAR applications.

2.2.1 S32K1/K3 MCUs 

S32K is a scalable portfolio of Arm® Cortex®-M core based MCUs targeted at general purpose automotive and industrial 
applications. All devices are AEC-Q100 qualified and include next generation safety, security and connectivity features with 
extensive software and tool support from NXP and its partners. Included in NXP’s product longevity program, S32K MCUs 
are available for a minimum of 15 years of production. 

The S32K1 family consists of 8 single core Arm® Cortex®-M0+ and M4F core MCUs with flash memory ranging from 128kB 
to 2MB and ASIL B level safety features. Additional features include CAN-FD, 100Mpbs Ethernet, a cryptographic hardware 
accelerator (CSEc) with NXP firmware, and a range of low power operating modes. Software includes MCAL drivers and a 
production-grade Software Development Kit (SDK) containing low-level drivers.  While still available, these driver packages 
are now superseded by RTD. FreeRTOS™ OS example code is included with RTD as part of NXP’s Reference Software 
package. 

The S32K3 family extends the portfolio scalability by introducing Arm® Cortex®-M7-based MCUs in single, dual, triple 
and lockstep core configurations supporting up to ASIL D applications. Flash memory range is extended up to 8MB with 
symmetric and asymmetric cryptography provided by the Hardware Security Engine (HSE). Full hardware over-the-air (OTA) 
update capability and Gbps Ethernet with TSN support further extend the feature set with devices available in BGA and new 
High Density QFP (HDQFP) packages. 

2.2.2 S32G2/G3 processors

The S32G2/3 families of vehicle network processors are designed to enable the development of high performance, domain-
based vehicle architectures while providing reduced software complexity and enhanced security and safety. Built upon up to 
eight 1.3GHz Arm Cortex-A53 cores, S32G devices include a hardware-accelerated Low Latency Communication Engine 
(LLCE) for de-coupling low-level CAN, LIN, FlexRay and SPI data processing from the main cores. Ethernet packets are 
accelerated using a Packet Forwarding Engine (PFE) that offloads computationally-intensive routing and address translation 
tasks from the main cores. S32G processors share many of the same software and tools as the S32K1/3 MCUs but add a 
Linux BSP and a range of cloud-connected products from NXP partner companies.

2.3 Downloading RTD

You can find links to download RTD at nxp.com/RTD with versions available for each supported processor family.

2.4 Migrating from SDK/MCAL to RTD

RTD provide multiple software features as extensions to the AUTOSAR standard with full coverage of all hardware features 
and peripherals. RTD contain examples with default configurations that are offered for the NXP S32CT and EB tresos 
configuration tools. 

RTD integrate use cases from AUTOSAR and non-AUTOSAR environments therefore from the developer perspective the 
SDK and MCAL experience is maintained. Each extension from the standard package can be enabled or disabled.

From an MCAL developer’s perspective, RTD extend the standardised functionality as defined by the standard and provide 
full coverage of on-chip hardware. In AUTOSAR applications the standardized interface is available and it is recommended 
to use this to maintain portability across applications.

From an SDK customer perspective, RTD extend the complete peripheral functionality while adding support for multi-core 
and user mode, and memory mapping of code and data to specific memory sections. For non-AUTOSAR applications, both 
High and Low Level interfaces (standardized and IP) are available and can be used.

https://www.nxp.com/design/automotive-software-and-tools/real-time-drivers-rtd:AUTOMOTIVE-RTD?tid=vanRTD


email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

9

From the configuration point of view, S32CT can be used to configure both the driver and the peripheral layer independent 
of the driver. The use of the standardized interface and peripheral layer interface is exclusive on the same hardware unit. EB 
tresos can be used for High Level driver configuration only.

2.4.1 MCAL Migration Guide to RTD

2.4.1.1 AUTOSAR version and configuration impact

The standard AUTOSAR MCAL modules that are part of RTD are implemented following the AUTOSAR 4.4 version or newer 
(please refer to Release Notes for details), hence the interface and the configuration for those drivers are compliant with the 
standard.

Default configuration files have been replaced in RTD with driver examples. No changes are required for currently supported 
tools.

The old MCAL configuration can be imported into an RTD project. Any parameter which has been updated or added will 
not be updated automatically by the tool importer and it needs to be updated accordingly in the project configuration stage.

Additionally, the drivers are supported by the S32 Configuration Tool inside S32DS. This allows configuring of the entire 
driver (i.e. its configuration in tresos) with the configuration being independent of the peripheral interface. For example, 
configuring the AUTOSAR CAN driver (AUTOSAR interface), or configuring only the non-AUTOSAR FlexCAN module 
(peripheral interface). Details for each specific platform migration are available in the platform specific appendix.

From the AUTOSAR perspective, RTD include additional functional extensions and new CDDs to address most of the 
hardware features on top of the already standardized AUTOSAR functionalities.

Migrating a project that utilizes all the standard functionalities described by AUTOSAR is seamless. In RTD the AUTOSAR 
extensions are also supported as described in previous MCAL releases. In addition, to support previous MCAL use-cases, 
the standard drivers have new APIs to extend the hardware functionality coverage. The graphic interface is updated to offer 
the possibility to configure those features.

2.4.1.2 CDD functionalities impact

New CDDs are added to enable the hardware peripherals that were not covered by the previous MCAL releases (e.g. UART, 
Quadrature, RM, Platform). A new feature is available for bare-metal applications through a Platform CDD which allows 
configuring and handling the interrupts for the application. The usage of this CDD is optional and interrupt management 
can be customised  for the application. Previous functionalities that were available only in MCAL are now migrated to RM 
(Resource Manager CDD) and MCL to improve coverage for hardware platform features and to split the functionalities.

Figure 2-2 MCAL to RTD
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2.4.1.3 File structure impact: Plugin structure

For the MCAL user perspective there is limited impact in the RTD plug-in structure. There is a similar file and folder structure 
like on the previous MCAL release. Additional files and folders are required to be included (i.e. “headers” folder in Base plug-
in). The details of each file dependency are specified in the driver IM.

The configuration data files are now split following a more granular approach to ensure the possibility of using the stand-
alone peripheral drivers. From a functional point of view, all the data that is needed in an AUTOSAR application will be 
exported through the HLI files, so nothing changes in the application flow. 

All modules require configuration and generation of configuration files prior to their usage. Example projects, included in the 
plugins, are provided to serve as a starting point.

2.4.1.4 Timeout handling

The OsIf module is added to RTD to allow a more flexible approach for applications with regards to OS integration and 
more options for users when configuring timeouts. For example, using an OS or a hardware timer for precise timing or loop 
counting to avoid any additional resource usage.

The OsIf module needs to be configured within the Base component:

•	 The type of OS used;

•	 The types of counters/timers to enable;

•	 References to the OS counters or the MCU clock, by case.

From migration perspective, timeout handling is backward compatible, as loop counting is a configuration valid option in 
the drivers. 

2.4.1.5 Compiler abstraction

The compiler abstraction has been simplified by removing the memory mapping related to AUTOSAR specific macros. From 
a migration perspective, there is no impact as the memory mapping is supported through means of MemMap functionality. 
The supported compilers do not require such abstraction macros and have the benefit of improving code clarity and 
compliance with code parser tools.

2.4.1.6 Driver configuration and build

Due to changes in the hardware peripherals, migrating the driver configurations should be accomplished via the following 
steps:  

1.	 All the general driver configurations can be imported from an older project by using the import features of the 

configuration tools chosen. This will import all the configuration fields which are not changed (all the AUTOSAR 

specific parameters, most of the high-level configuration parameters, etc.). 

2.	 Platform specific updates need to be performed in the configuration tool for all the platform specific parameters which 

cannot be directly imported by the tool. Configuration examples can be used as a starting point. 

3.	 RTD updated/new parameters need to be re-configured. The provided example projects mitigate the migration effort 

by providing a default configuration as a starting point. 

For driver build, the following steps need to be completed.

1.	 File structure update, to include the new sources, wherever required. 

2.	 Mapping the changes for rearchitected drivers’ configuration, functionality and symbol names. 
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2.4.2 SDK Migration Guide to RTD

RTD offer the functionalities that are available in the SDK, extending the Peripheral Abstraction Layer (PAL) with AUTOSAR 
implementation and support for use-cases addressing both AUTOSAR and non-AUTOSAR applications. RTD abstract 
all the hardware functionalities as supported in the SDK. The RTD architecture enables decoupling of the peripheral layer 
in order to be used standalone by providing the peripheral interfaces. Migrating an application from SDK to RTD requires 
several changes as imposed by the RTD architecture. From the SDK perspective S32CT is used to configure the drivers. In 
the S32CT, both HL and IP interfaces of the driver can be configured to maintain the functionality already provided in SDK.

2.4.2.1 Driver configuration changes

The driver configuration files follow the same layered architecture, split between HL and IP layers, with the internal IP 
Wrapper (IPW) glue-layer in between.

Note:
The main difference between SDK and RTD configuration scheme is the usage of dynamic (configurable) pre-compiled 
configuration parameters. These allow the application to disable parts of driver code that are not intended for use (RTD 
driver sources include the configuration headers) which results in more flexibility and less code size on the application 
side.

2.4.2.2 Configuration classes and variant support

The RTD configuration follows the AUTOSAR configuration concept that applies on all layers. In order to support multiple 
configurations that are selectable at different binding times, variant and configuration classes support was added. 
Consequently, the configuration code is generated in multiple files, corresponding to the variants defined in the project. 

Variant support translates into the possibility of generating multiple configuration structures, selectable at runtime. Variant 
support main use-case is to allow runtime reconfiguration of an ECU (different mode support – startup vs runtime vs 
shutdown driver behavior, same code with different behaviors depending on external input – left door vs right door car 
integration, etc.) 

Configuration class support translates into the possibility of generating multiple configuration structures, selectable at pre-
compile time, link time and post-build time. Each driver has support for a predefined one, several, or all configuration 
classes. 

All the configuration structures are generated as constants, to avoid their spurious corruption, and allocated in the memory 
space of the drivers, with support for independent memory mapping (for example: map the configuration data into a slow/
read-only memory, map the driver code into a fast memory).

Note:
Support for initializing a driver without the need to pass a configuration pointer to the initialization function has been 
replaced by the PRE_COMPILE mode configuration support (as in the AUTOSAR methodology). This applies only to 
the High Level Interfaces.

No default configuration is stored as internal driver global variables, instead, a PRE_COMPILE configuration can be 
generated, which is referenced directly by the driver using internal mechanisms. This has the benefit of supporting 
the same use cases plus offering support for tailoring this configuration with help of the GUI configurator, support for 
memory mapping relocation, reduced memory consumption and consistent approach for all configuration modes.

All modules require configuration and generation of configuration files prior to their usage. Configuration examples 
can be used as a starting point and need to be processed by the configuration tool before module initialization can be 
performed.
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2.4.2.3 Functionality impact

RTD abstract all the hardware functionalities and offer standardized interfaces across platforms. Due to changes in 
architecture and naming convention, SDK APIs and data types are changed to support the current approach, that will 
imply that even though from functional perspective RTD offers same functionalities as the SDK, the migration will not be 
transparent to the customer.

The naming convention for RTD implies consistent changes for the data types and APIs, as presented below.

Data types in RTD use the following naming convention:

<Prefix>_<TypeName>Type

Where:

•	  <TypeName> shall follow the so called PascalCase convention (first letter of each word is uppercase, consequent 

letters are lowercase).

•	  <Prefix>:

•	 For HL interface: <MSN>_[<vi>_<va>_]

•	 For IPW: <MSN>_[<vi>_<va>_]_Ipw

•	 For IP interface:

      <Ip>_<MSN>_Ip for all shared IPs

   <Ip>_Ip for IPs that are not shared

•	 Where:

   <MSN>           Module Name

   <vi>             Vendor ID (=43 for NXP)

   <va>             Vendor Api Infix

   <Ip>             Name of the IP 

Example: typedef uint16 Spi_NumberOfDataType;

Note:
“IPW” symbols are private and not intended to be used by an application.

APIs in RTD have the following naming convention: 

<Prefix>_<APIName>()

 Where: 

•	  <APIName> shall follow the so called PascalCase convention (first letter of each word is uppercase, consequent 

letters are lowercase).

•	  <Prefix>:

•	 For HL interface: <MSN>_[<vi>_<va>_] (example : Lin_SendHeader())

•	 For IPW: <MSN>_[<vi>_<va>_]_Ipw

•	 For IP interface:

       <Ip>_<MSN>_Ip  for all shared IPs (example: eTimer_Icu_Ip_StartSignalMeasurement())

       <Ip>_Ip for Ips that are not shared  (example: Swt_Ip_Init())

•	 Where:

      <MSN>          Module Name

	   <vi>               Vendor ID (=43 for NXP)

	   <va>              Vendor Api Infix

	   <Ip>               Name of the IP 
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Note:
“IPW” symbols are private and not intended to be used by an application.

The differences between SDK API names and RTD names are summarized in the following table (for drivers that do not use 
Vendor ID and Vendor Api Infix, and for peripherals that are not shared between drivers). 
                                                                    

Designation SDK RTD

Data types _t suffix & snake_case style Type suffix & PascalCase style

IP layer APIs <MDL>_DRV_FunctionName <MDL>_Ip_FunctionName

High Level APIs <MDL>_PAL_FunctionName <MDL>_FunctionName

Table 2-1 SDK and RTD name differences

Note:
There is no implication that these formal changes in the API are the only required updates for porting from SDK to RTD. 
The APIs in RTD also contain semantic changes, as required by the integration with higher levels. From a functional 
perspective, RTD APIs map logically on former SDK APIs (no regression/degraded functionality); however, the meaning 
of some function names/parameters may differ. It is application’s responsibility to use the proper APIs for the required 
functionality, after carefully studying the user manuals.

2.4.2.4 Memory mapping

RTD introduce mechanisms for the mapping of code and data to specific memory sections in order to support avoidance 
of waste of RAM, usage of specific RAM properties, usage of the same source code of a module for boot loader and 
application, encapsulation and isolation.

Default memory sections are provided inside the RTD package, therefore migrating from SDK to RTD implies only adding to 
the project the <Driver>_MemMap.h files provided into Base plugin and update the linker files.

The <Driver>_MemMap.h file stubs are provided, which is expected to be updated in AUTOSAR context and can be used 
as it is in non-AUTOSAR context.

2.4.2.5 Expose interface

The RTD are designed to satisfy both AUTOSAR and non-AUTOSAR (former SDK) use cases. The RTD provide two sets 
of interfaces: 

•	 High Level: Standardized interface generic across platforms 
•	 Low Level: IP interface generic across platforms with the same set of IP features 

The following limitations are still applicable when migrating the application from SDK to RTD:

•	 It is forbidden to use the same hardware instance in HL and IP (e.g. if SPI1 is used in HL context, it cannot be used 
also through IPL)

•	 IP layer does not provide tresos configuration. It can be configured only on using the S32 Configuration Tool (S32CT) 
inside S32 Design Studio.

•	 IP layer is not intended to be used in AUTOSAR applications, as it does not satisfy the AUTOSAR compliance 
constraints (DEM, DET, Multicore, etc.); IP layer is not intended to be a standalone AUTOSAR CDD.
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2.4.2.6 Error management

The error detection and reporting mechanism for the RTD is tailored for the target application type. Error management 
concept incorporates reporting of the development errors and runtime errors, using different reporting mechanisms as 
described below. 

Migrating applications that used the PAL functionalities implies architectural modification from error management perspective. 
For the high-level layer, error management follows the AUTOSAR specifications for Default Error Tracer and Diagnostics 
Event Manager. RTD provides reference code for the implementation of these modules, which can be used or overwritten 
by the customer application. 

The HL APIs return Std_ReturnType (E_OK/E_NOT_OK) where synchronous reaction is needed. 

For asynchronous reactions, when these are defined, the HL APIs will return an extra specific error, which can then be 
retrieved by calling the dedicated APIs in DEM/DET. 

Default Error Tracer (DET) offers mechanisms to handle both development errors and runtime errors. 

Diagnostic Event Manager (DEM) offers mechanisms to handle critical runtime errors in case these have a high impact on 
the application integrity. 

The RTD provide a “stub” implementation of these AUTOSAR modules, which can be used or overwritten by the customer 
application. 

The errors reported by the IP layer are still split in two categories: 

•	 Development errors: Usually parameters checking, function call plausibility, etc. These errors are checked using 

DevAssert function. In case an error is detected, it halts the program execution in the default implementation. The 

default behavior of DevAssert function can also be overwritten by the application. This mechanism is almost identical 

to the DEV_ASSERT functionality in older SDK, the only improvement being that these statements are now enabled/

disabled for each driver separately, as opposed to the SDK approach where this was a global configuration (refer to 

Figure 3). 

•	 Runtime errors: As opposed to the SDK, where all runtime errors reported by drivers were grouped in the generic 

enumeration called status_t, the RTD define a set of runtime errors as per driver. The naming convention for these 

errors is <IP_Name>_Ip_StatusType. 

Each driver defines the set of errors that can be reported by the controlled IP, these errors can either be used by the non-
ASR application implemented on top of the IP layer for retrieving the status of the driver, or further fed into the high-level 
state machine of the layers on top. 

2.4.2.7 File structure

To comply with both AUTOSAR and Non-AUTOSAR configuration tools, the RTD use a modular approach on the file layout. 
While in S32SDK, drivers shared a common folder, but were distinct from PALs, RTD modules are contained in individual 
folders.
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2.4.2.8 Interrupt management

As opposed to the S32 SDK, the RTD do not manage interrupt requests at system level. It is an external assumption that 
the proper interrupts are enabled in the interrupt controller and the right handlers are present in the IVT for the drivers to 
work. It is the application’s responsibility to configure the interrupt controller and define the right ISRs as mentioned in each 
driver’s documentation. 

From migration perspective, the RTD define a dedicated platform specific CDD, called Platform, which provides the API 
and configuration support for setting up the interrupts. The configuration for Platform contains all the required information 
for the interrupt settings (enablement, priorities, handlers etc.). Calling the initialization function of this new driver sets the 
right configuration in place and is considered a prerequisite for the correct functionality of other drivers that require interrupt 
routines. 

2.4.2.9 Exclusive areas

Thread-safety is ensured by means of Exclusive Areas, implemented in all RTD layers. As defined by AUTOSAR, all locks (critical 
sections) are implemented via SchM calls (using the SchM_Enter_<ModulePrefix> and SchM_Exit_<ModulePrefix> 
functions). RTD provide only a reference implementation for the exclusive areas.  Depending on the use case the developer 
decides which exclusive areas to implement and with what method e.g. disabling interrupts, mutexes, etc.
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CHAPTER 3 Migrating from FreeRTOS™ 
to SAFERTOS®

SAFERTOS® is a safety critical RTOS from WITTENSTEIN high integrity systems (WHIS), available pre-certified to IEC 61508 
SIL3, and ISO 26262 ASILD. It is commonly used in the automotive industry and supports a wide range of NXP platforms.

SAFERTOS® and the NXP S32K/G processor families are well suited for non-AUTOSAR automotive applications due to 
their high performance and safety credentials. SAFERTOS® is fully compatible with NXP’s RTD.

The advantages of SAFERTOS® include but are not limited to:

•	 ISO 26262-6 ASIL D & IEC 61508-3 SIL 3 pre-certified Real Time Operating System; 

•	 Dependable, deterministic Task scheduling;

•	 Specific Processor/Compiler combination;

•	 Tools to enable spatial separation;

•	 Easy integration into development environment;

•	 Smooth path to certification;

•	 Low cost of ownership over product lifetime;

•	 Multiple adoption models;

•	 Part of a stable and mature corporation;

•	 Developed by WITTENSTEIN high integrity systems, a safety systems company.

3.1  Comparing FreeRTOS™ and SAFERTOS®

3.1.1 A popular migration route

SAFERTOS® is based on the functional model of the FreeRTOS kernel, a market leading embedded RTOS for microcontrollers 
and small microprocessors. Distributed freely under the MIT open source license, FreeRTOS includes a kernel and a growing 
set of IoT libraries suitable for use across all industry sectors. 

Although SAFERTOS® and FreeRTOS share a functional model, SAFERTOS® is not FreeRTOS. It has been completely 
redesigned by WHIS’ team of safety experts. WHIS engineers took the FreeRTOS kernel functional model, subjected it to a 
full HAZOP, identified all areas of weakness within the functional model and API, and generated a set of safety requirements. 
The resulting functional and safety requirements sets were put through an IEC 61508-3 SIL 3 development life cycle, the 
highest possible for a software only component, creating the SAFERTOS® code base and Design Assurance Pack.

As the FreeRTOS kernel and SAFERTOS® share the same functional model, upgrading is easy. Many WHIS customers 
prototype using the FreeRTOS kernel and convert to SAFERTOS® at the start of their formal development phase. An 
experienced engineer can migrate a typical FreeRTOS application from FreeRTOS to SAFERTOS® within one day. For 
engineers less experienced with this upgrade path, the migration would take approximately three days.
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3.1.2 A Shared History

Richard Barry created FreeRTOS while an employee at WHIS. Seeing its potential, WHIS engineers worked closely with 
Richard. They took the FreeRTOS functional model, exposed it to a full HAZOP, identified all areas of weakness within the 
functional model and API, mitigated all areas of weakness, and took the resulting requirements set through an IEC 61508 
SIL 3 development life cycle, the highest possible for a software only component.

In doing so SAFERTOS® and its accompanying Design Assurance Pack were created: the renowned safety critical RTOS 
that delivers superior performance and safety critical dependability whilst consuming minimal resources. 

The success of these endeavors can be judged by the fact SAFERTOS® was independently certified on the first iteration by 
TÜV SÜD back in 2007. SAFERTOS® has continuously evolved since its initial creation and the list of supported processors 
and toolsets is constantly expanding. 

As the FreeRTOS kernel and SAFERTOS® share the same functional model, upgrading is easy. Many developers prototype 
using the FreeRTOS kernel and convert to SAFERTOS® at the start of their formal development phase.

3.1.3 Key Differences

SAFERTOS® and FreeRTOS share a functional model, so feel very similar to use. There are however some key differences. 
Compared with FreeRTOS, SAFERTOS®:

•	 Has been completely re-engineered to meet safety critical software needs;

•	 Has fewer Application Programming Interface (API) functions;

•	 Does more error checking;

•	 Returns a status code from most API calls (with other return data passed by reference);

•	 Strongly encourages 100% static allocation and provides no “heap” functions;

•	 Requires the application to supply all stack, task control block and queue buffers;

•	 Uses a processor’s Memory Protection Unit (MPU) by default.

Because of this, when migrating a FreeRTOS project to SAFERTOS® there is some work to do to get the kernel up and 
running.

FreeRTOS hides much routine memory management “under the hood”, dynamically allocating stack buffers as tasks are 
created, allocating key kernel buffers when the kernel is started, and so on. It is possible to configure FreeRTOS to have all 
these things statically allocated and supplied by the application, but most people settle for the simpler approach of letting 
FreeRTOS do it.

FreeRTOS also provides a lot of compile-time options and allows the application designer to insert extra functionality into 
the kernel via strategically placed “hook macros”, so that code can be run as tasks are switched in or out, for example, or 
when they are deleted or created.

3.1.3.1 API Differences

WHIS offer a free Application Note that goes into some detail about the main differences between the FreeRTOS and 
SAFERTOS® API, that is freely available from the WHIS website Download Centre www.highintegritysystems.com

For a complete description of the SAFERTOS® API, the product- specific manual that ships with every licensed copy of 
SAFERTOS® is definitive. The RTOS-defined abstract type names differ between the two platforms, as do the necessary 
RTOS #include files. With FreeRTOS, an application file needs to #include headers for each of the main parts of the API that 
it uses – task functions, queue functions, semaphore functions, etc. – while with SAFERTOS®, an application file need only 
#include a single RTOS header file, SafeRTOS_API.h.
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3.1.3.2 Static Allocation and the MPU

SAFERTOS® requires the application engineer to supply all the buffers that are needed to maintain task and object state. 
For example, both FreeRTOS and SAFERTOS® create a kernel “idle task” at the lowest possible task priority to ensure that 
there is never a situation where there is no ready task that can be scheduled. In both cases, the idle task must never block. 
Additionally there are mechanisms by which the idle task can be used for “background” application functions, for power 
saving measures or other application-specific purposes.

The idle task needs a task stack, and a task control block. FreeRTOS allocates these from heap (unless explicitly configured 
for static allocation) while SAFERTOS® requires the application to supply these (and other) buffers. Static allocation is 
generally preferred in safety critical systems as it’s easier to make a case that there is sufficient memory for all run-time 
circumstances.

Working with the MPU implies that the application designer has a conscious oversight of the exact placement in address 
space of all memory structures – and the kernel task and queue buffers are an important part of that. Moreover, an MPU 
usually imposes restrictions on the alignment and size of protection regions, and the application engineer needs the flexibility 
to meet these restrictions, which often means arranging things carefully to avoid inefficient use of the available space.

With FreeRTOS, it’s usually enough to make sure there’s plenty of free space on the heap before calling xTaskCreate. 
With SAFERTOS®, you need to pre-allocate and explicitly locate a carefully sized and aligned stack buffer, and statically 
allocate and locate a buffer for the task TCB, then pass pointers to these structures into xTaskCreate along with the usual 
task parameters.

3.1.3.3 Task Privilege and Kernel Function Wrappers

Each SAFERTOS® task is assigned an operating privilege, of which there are usually two: “Privileged” and “Unprivileged”. 
“Privileged” tasks have the same basic powers as kernel code. Most CPUs that allow privileged and unprivileged modes 
have a restricted range of instructions available in unprivileged modes, and a limited mechanism – usually some kind of 
software trap, exception or interrupt – for moving between unprivileged and privileged mode operation.

It’s generally regarded as good practice to code as much of an application as possible to run in unprivileged mode, and to 
that end, each task is provided with a set of MPU parameters that are switched in and out of a fixed range of MPU region 
descriptor slots whenever the task is switched in and out by the scheduler.

The SAFERTOS® task creation adds an additional MPU region for each task that grants it access to its own stack, and this 
is automatic, although the application programmer still must ensure that the task’s stack buffer conforms to the restrictions 
imposed by the MPU regarding alignment and size.

Unprivileged tasks also need to have execute access to the kernel API functions. Since these are usually expected to be 
called only from privileged mode, every API function with SAFERTOS® has a privilege-escalating wrapper. Typically, this 
works by raising an exception of some kind – most often using a “system call” – a synchronous interrupt or trap facility 
provided by the CPU for this purpose. The API wrapper will raise a task’s privilege level, if need be, execute the API function, 
then lower the privilege again if it was raised.

In SAFERTOS®, we presume that application tasks will normally run unprivileged. With the FreeRTOS MPU-aware ports, 
tasks are presumed generally to run at kernel privilege, as they do in non-MPU ports, but tasks may optionally be created 
“restricted”, that is, unprivileged.
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3.2  Migrating from FreeRTOS™ to SAFERTOS®

Two Stage Approach

The approach used to convert a FreeRTOS project into a SAFERTOS® one is typically done in two basic stages:

1.	 Convert the project to SAFERTOS®, with everything running in privileged mode.

2.	 “Lock down” tasks that needn’t run in privileged mode.

Part 1: Converting the Project to use SAFERTOS®

1.	 Replace the FreeRTOS kernel code files with the SAFERTOS® ones;

2.	 Edit the linker file to export symbols required by the SAFERTOS® kernel;

3.	 Ensure that the SAFERTOS® interrupt and exception handlers are installed;

4.	 Create mandatory hook functions and static buffers for kernel tasks and queues;

5.	 Create a scheduler initialization struct and function;

6.	 Create required static buffers for application task TCBs, stacks, queues, etc.;

7.	 Convert FreeRTOS API calls to equivalent SAFERTOS® ones;

8.	 Convert FreeRTOS-specific types to SAFERTOS® ones;

9.	 Make all tasks privileged and set default MPU parameters.

Note that steps 1 through 6 inclusive are essentially unavoidable one-off overhead for any SAFERTOS® application, whether 
converted from FreeRTOS or not. 

Steps 7 and 8, particularly 8, can to some extent be speeded up using an IDE’s search & replace functions, though beware 
of fundamental differences between the APIs that mean care is needed.

Part 2: Making Tasks Unprivileged

Making tasks run in an unprivileged manner varies in complexity according to the tasks. It can be as simple as marking a 
task unprivileged, or it can involve considerable extra work.

3.2.1 Convert the Application to use SAFERTOS®

3.2.1.1 Replace the FreeRTOS Code

The first step is straightforward, we just delete everything under amazon-freertos and replace it with the SAFERTOS® kernel 
source. Or, in the case of this web-demo version of SAFERTOS®, replace it with the SAFERTOS® headers and library file. 
Here, we’ll create a folder called SAFERTOS® containing subfolder kernel.

In the project options, all references in include paths to amazon-freertos/freertos_kernel need to be replaced 
by SAFERTOS®/kernel. There are the expected entries in the compiler and assembler include paths under C/C++ Build/ 
Settings.

In a wizard-generated project like this there are also some references under C/C++ General/Paths and Symbols.
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3.2.1.2 Edit the Linker File

SAFERTOS® requires some named sections to be defined in, and various symbols to be exported from, the linker file in 
order to set up initial MPU regions to protect kernel data and to allow access to general code.

The sections and symbols required are port specific, but you can see the MPU settings (and hence the required symbols) in 
the kernel portable layer header file portmpu.h.

We can see we need a section for kernel functions called “kernel_func” and another for kernel data called “kernel_
data”. The kernel functions and data are placed in these by section attributes.

The kernel functions are typically placed alongside the vector table so that both can be included in the MPU region that 
protects them, and the kernel data are placed somewhere in RAM that can be readily aligned to the needs of the MPU. In 
this case, the NXP MPU doesn’t have especially strict alignment requirements – regions need to be a minimum of 32 byte 
aligned – so the placement and size are quite flexible.

In addition to the linker sections, the linker file needs to export symbols indicating where these sections start and finish, and 
we also need symbols for the start and end or size of ROM and RAM. Again, from the portable layer we can see we need:

•	  lnkStartFlashAddress

•	  lnkEndFlashAddress

•	  lnkStartKernelFunc

•	  lnkEndKernelFunc

•	  lnkStartKernelData

•	  lnkEndKernelData

•	  lnkRAMEnd

•	  lnkRAMStart

3.2.1.3 Exception and interrupt handlers

SAFERTOS®, like FreeRTOS, makes use of certain interrupts and exceptions. The S32K product variants needs to use 
the SysTick, PendSV and SVC interrupts, all of which are generally hooked into simply by using the CMSIS names for 
the handlers for these. If using CMSIS compliant platform support, these symbols are weakly linked and appear in the 
default vector table where they need to be, so that the RTOS simply has to name its own handlers according to the CMSIS 
convention.

In SAFERTOS®, we generally achieve this by simply #defining the SAFERTOS® names for the necessary handlers to be the 
CMSIS names instead, and we typically do this in SafeRTOSConfig.h. However, for this example we’re using a library 
build of SAFERTOS®, so the handler names are already fixed in the library, so we just reverse the trick and redefine the 
CMSIS names in the startup file where the vector table is defined, instead.

In this example project, the vector table is defined in startup_mk64f12.c, and we simply insert the following few lines 
near the beginning of that file:

                               /* SAFERTOS system tick, SVC and PendSV handlers */
                              #define SysTick_Handler            
                              #define SVC_Handler                
                              #define PendSV_Handler             

Unlike FreeRTOS, SAFERTOS® checks the vector table entries at startup and will not run if they aren’t present and correct.

vTaskProcessSystemTickFromISR
vSafeRTOSSVCHandler
vSafeRTOSPendSVHandler
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3.2.1.4 Kernel hook Functions

SAFERTOS® doesn’t have FreeRTOS’ hook macros in the kernel. Instead, it provides for a limited set of “hook functions” 
that, if present, are called by the kernel when, for example, a task is deleted or the idle task runs or the tick interrupt fires.

Of the various hook functions, only one is mandatory, and that is the Error Hook Function. It’s a requirement of safety critical 
systems that they can enter a safe failure state if an unrecoverable error is detected. If the kernel detects an error condition 
like a corrupted task control block or an overflowed stack, then it calls the Error Hook Function, which is responsible for 
making the system safe overall – turning off any motors or H-bridges, for example – and must not return. For our simple 
example application, we’ll have an error hook function that simply loops indefinitely having made information about the error 
accessible to the debugger.

3.2.1.5 Kernel Task Buffers, Kernel Configuration and Startup

In addition to the address of one or more hook functions, we need to pass in the address and size of a stack buffer for use 
by the kernel idle task. There’s also a second stack buffer required for the kernel timer task. Both the idle and timer tasks 
have some additional parameters that must be passed in, including their own MPU parameters, and there’s also a timer 
command queue that needs a queue buffer of sufficient size, alignment etc.

To pass in all of the parameters that are needed to configure SAFERTOS®, the structure xPORT_INIT_PARAMETERS is 
defined. A pointer to this structure is used as the parameter to the xTaskInitializeScheduler() function.

Arguably, the most complicated part of the move to SAFERTOS® with a minimal application is getting the scheduler 
configured and started. To avoid obfuscating the tiny demo application with so much more code, we’ve chosen to place the 
error hook function in a “hook functions” source file, and all the kernel configuration, including the stack and TCB allocations 
for kernel tasks, into another source file which we’ve named SafeRTOSConfig.c, since it’s a sort of extension, in a sense, 
of the kernel configuration header file SafeRTOSConfig.h.

SAFERTOS® API functions almost always return either pdPASS (to signify that the operation was successful) or an error 
code. This means that whenever a SAFERTOS® API function is used, the caller should save the return value so that the 
cause of the failure can be identified. All of the error definitions can be found in the header file projdefs.h.

The error codes for the entire API are listed, making it relatively easy to work out what went wrong if the kernel didn’t start, 
for example. Usually if this happens it’s because the proper IRQ handlers haven’t been set up in the vector table(s), or one 
or other of the static kernel task structures – stack of TCB – is mis-aligned or too small, or a non-optional hook function – 
usually only the Error Hook – is missing, misaligned or mis-located.

3.2.1.6 Global MPU Regions

One final thing worth doing for this particular application is to use one or other of the “spare” MPU regions (that many 
SAFERTOS® ports provide) to set up a global, permissive region that allows access to the GPIOs that we’re using to drive 
the on-board LEDs. This saves us having to grant explicit access to those to every task or call-back that might want to 
use them – the number of task- specific MPU regions is limited. If you look at the kernel configuration and startup code in 
SafeRTOSConfig.c, you’ll see where we’ve done just that. There’s a call to xMPUConfigureGlobalRegion() that sets up 
a “global” MPU region granting read/write access to the GPIO register space. (Which is the majority of peripheral address 
space in this case.)

3.2.1.7 Application Task TCBs and Stacks

We next need to set up the stack and TCB buffers for our individual application tasks, and to fill in the other task parameters. 
Again, this involves allocating static buffers, having a suitable size and alignment for their intended use given MPU and other 
port-specific considerations.
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In FreeRTOS, when we create tasks, we just pass all the necessary task parameters via six arguments to the xTaskCreate()  
function, which returns either the handle of the newly created task, or pdFAIL if it can’t create the task. With SAFERTOS®, 
there are more task parameters, and some of them are port-specific, so they’re passed to xTaskCreate() using single 
argument pointing to a port-specific xTaskParameters structure. Like most of the SAFERTOS® API, xTaskCreate() 
returns either pdPASS or an error code, so a second argument gives the address of a task handle variable to receive the 
handle of the newly-created task. If you don’t need the task handle, this argument can be NULL.

In our example, many of the task parameters remain the same for all four of the tasks our application creates, so we save 
some space and time by re-using the same parameter’s structure and just changing the parameters that need to change. 
This isn’t best-practice as it would be relatively easy to overlook some vital change – for instance, it is imperative that each 
task has unique stack and TCB buffers (for obvious reasons).

Here, we see that the task name and parameter differ in each case, too, as in the FreeRTOS version. Also among the task 
parameters are each task’s privilege level and MPU region settings. As described earlier, in the first place we’re going to 
make all tasks privileged, so none of them require any additional MPU parameters – not with this application on this target 
anyway – so we leave those set to zero/null.

3.2.1.8 API Function Call Changes

More or less the last thing that needs doing is for every API call, to check to see that the SAFERTOS® version has the 
same name and whether, or how, its prototype differs. In most cases, void functions will have become functions returning 
the architecture’s signed base type, in order to report an error or pass code. Where the equivalent FreeRTOS function also 
returns a value, typically the SAFERTOS® version will return the value via a pointer type argument, and the function return 
value will usually be a status code. Some of the function names will have changed, and some of the FreeRTOS functions 
won’t be available, so the application programmer will sometimes have to work around such omitted functions by using the 
underlying core functions in perhaps a slightly more long- winded way.

For the sake of form, where functions in SAFERTOS® return a value that we discard, the function should generally be 
prefixed with a void cast to indicate that this is deliberate.

3.2.1.9 Type Name Changes

As well as some of the API functions having different names, many of the port-layer defined type names also differ. Some 
are common to both FreeRTOS and SAFERTOS®, but many of the longer- established ones are not. 

If developing FreeRTOS applications with a specific view to converting to SAFERTOS®, picking the type name options that 
are shared between the two, or are at least readily search-and-replaceable, will save some time.

3.2.1.10 Wrapping Up

After following the steps to now, we should have arrived at a point where the application will compile again and will run on 
the target system essentially the same as the FreeRTOS version.

If, as often happens in practice, the kernel refuses to start at this point, or a task creation call fails, the error codes returned 
should help to identify the problem. These codes are listed in the kernel header file projdefs.h. As an example, the function 
that starts the kernel, xTaskStartScheduler(), is not supposed to return. If, rather than starting the scheduler, it 
instead returned the value -27, we could refer to projdefs.h and see that this is the code for ERROR_IN_VECTOR_TABLE, 
which means that the kernel start-up configuration checks have determined that one of the interrupt vectors essential to the 
SAFERTOS® kernel is misconfigured in some way.
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3.2.2 Making Application Tasks Unprivileged

In the final stage of conversion, we’ll look at “locking down” the privileged tasks so that they can run unprivileged. We’ve 
already granted access for any task to the GPIO registers we’re using, via a “global MPU region.” Now let’s see what else 
the tasks might need to have explicit access granted for if they are converted to unprivileged.

One worthwhile exercise is simply to mark one or other of the tasks as unprivileged and then load and run the application 
and note that (in this case) it winds up in the MPU fault handler. You can examine registers with the debugger to identify 
the faulting address, and you could try using the debugger to force a return from the handler as a quick way to identify the 
instruction that gave rise to the MPU fault. (Though with the fault uncorrected, the CPU will likely machine-check at that point 
and probably drop the debug connection.)

In this case, we can see we need the individual LED tasks need access to the shared “brightness request” array, and also 
to the handle of the mutex that is used to control access to said array. The mutex buffer, on the other hand, is only ever 
accessed via privileged kernel code so can remain out of reach of the tasks. 

By the same token, if we’d used a queue to pass information between the tasks, rather than shared memory, we would 
need no additional MPU settings to grant access as the queue itself would be accessed only in privileged mode (by the 
kernel API) and the queue handle could be communicated via each task’s parameter or thread-local storage pointer.

Recall that earlier on in this document, we commented that the shared memory communication between tasks was less 
than ideal but allowed us to illustrate a technique? Well, this is it. Given a need to access a shared region of RAM, how do 
we do it?

We go back to the linker file and create another named section, complete with exported start and size symbols, somewhat 
similar to the kernel sections we looked at earlier. Then we add placement attributes to the code. Syntax between different 
compilers vary, but with GCC, we typically use:

 __attribute__ ( ( section ( “section_name”)))

To specify the placement of a variable or function.

Finally, we use the symbols from the linker file to define MPU region specifications that can be added to task MPU parameters 
in order to gain access.

Remember that the exported linker symbols are addresses, so we can take the symbol’s address after declaring it as an 
extern variable, or we can declare it as an array type whereby its unadorned name will be an address automatically. 
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CHAPTER 4 Using RTD and SAFERTOS® in a Safety 
Critical Application

RTD is one of several offerings in the S32 software enablement to maximize software reuse across processor platforms and 
broaden AUTOSAR access for mass-market developers.

The use of an ISO 26262-compliant development process for RTD allows any automotive or industrial application to 
implement functional measures in both hardware and software. Along with the safety compliant RTD, SAFERTOS® delivers 
source code and a Design Assurance Pack (DAP) tailored to the processor and compiler being used. The DAP guarantees 
easy installation of SAFERTOS® integration into the development environment being used and that there will be no hardware 
retesting. Together SAFERTOS® and RTD reduce development costs and accelerate time to market while achieving required 
safety targets.
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CHAPTER 5 Conclusion

As software-defined vehicles emerge, automotive software has become the central development challenge to achieve 
safety requirements. The RTD software offering helps customers address this challenge while covering the S32 Automotive 
platform’s common architecture and functional safety. 

SAFERTOS® provides responsive, feature rich functionality within a networked environment with a 100% success rate in 
certifying SAFERTOS® in applications, making it ideal for automotive projects. 

Together the RTD software and SAFERTOS® make a compelling solution for automotive developers. 
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RESOURCES

Video Tutorials on Using the SAFERTOS® Demo 

WHIS offer a variety of useful videos on the WHIS YouTube Channel. In particular, the playlist “Using the SAFERTOS® Demo” 
is a three-part series of videos that will help walk you through how to use the free demos on the WHIS website.

•	 https://www.youtube.com/user/HighIntegritySystems/videos 

FreeRTOS 

Developed in partnership with the world’s leading chip companies over a 15-year period, and now downloaded every 170 
seconds, FreeRTOS is a market-leading real-time operating system (RTOS) for microcontrollers and small microprocessors. 
FreeRTOS is stewarded by Amazon Web Services (AWS). Distributed freely under the MIT open source license, FreeRTOS 
includes a kernel and a growing set of IoT libraries suitable for use across all industry sectors. FreeRTOS is built with an 
emphasis on reliability and ease of use. 

•	 https://www.freertos.org/ 
•	 https://github.com/FreeRTOS

SAFERTOS® 

SAFERTOS® from WITTENSTEIN high integrity systems is a pre-certified safety Real-Time Operating System (RTOS) for 
embedded processors. It delivers superior performance and pre-certified dependability, whilst utilizing minimal resources. 
8-hour binary demos (simply reset the board at the end of 8 hours to restart the execution) are freely available from the WHIS 
website, or 30 day evaluation packages are available by contacting the sales team.

•	 https://www.highintegritysystems.com/safertos/

RTD

Real-Time Drivers (RTD) combine AUTOSAR MCAL drivers with a set of Complex Device Drivers (CDDs) and are designed 
for automotive processors featuring Arm® Cortex®-M cores. RTD combine elements of NXP’s SDK and MCAL drivers into 
a single software product that provides full IP and feature coverage for both AUTOSAR and non-AUTOSAR applications. 
Developed as a Safety Element out of Context (SEooC) using an ISO2626 compliant process, RTD enhance and extend 
the previous generation of drivers and are suitable for use in applications up to ASIL D level. NXP provides RTD for System 
Basis Chips (SBCs), Ethernet and CAN PHY devices delivered as separate packages.

•	 www.nxp.com/RTD 	

https://www.youtube.com/user/HighIntegritySystems/videos
https://www.freertos.org/ 
https://github.com/FreeRTOS
https://www.highintegritysystems.com/safertos/
http://www.nxp.com/RTD
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CONTACT INFORMATION

User feedback is essential to the continued maintenance and development of SAFERTOS®. Please provide all software and 
documentation comments and suggestions to the most convenient contact point listed below.

Contact WITTENSTEIN high integrity systems

Address:	 WITTENSTEIN high integrity systems
		  Brown’s Court, Long Ashton Business Park
		  Yanley Lane, Long Ashton
		  Bristol, BS41 9LB
		  England

Phone:		  +44 (0)1275 395 600
Email:		  support@HighIntegritySystems.com 
	
	
Website		 www.HighIntegritySystems.com

All Trademarks acknowledged.

Contact NXP

Address:	 NXP Semiconductors 
                          High Tech Campus 60 
                          5656 AG Eindhoven
                          The Netherlands       

Phone:		  +31 40 272 9999
Support:	 www.nxp.com/support	
	
	
Website		 www.nxp.com

All Trademarks acknowledged.

WITTENSTEIN high integrity systems
Americas: +1 408 625 4712
ROTW:	 +44 1275 395 600


